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The composite method: an improved method for
stream-water solute load estimation

Brent T. Aulenbach* and Richard P. Hooper†
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Abstract:

The composite method is an alternative method for estimating stream-water solute loads, combining aspects of two
commonly used methods: the regression-model method (which is used by the composite method to predict variations
in concentrations between collected samples) and a period-weighted approach (which is used by the composite method
to apply the residual concentrations from the regression model over time). The extensive dataset collected at the
outlet of the Panola Mountain Research Watershed (PMRW) near Atlanta, Georgia, USA, was used in data analyses
for illustrative purposes. A bootstrap (subsampling) experiment (using the composite method and the PMRW dataset
along with various fixed-interval and large storm sampling schemes) obtained load estimates for the 8-year study
period with a magnitude of the bias of less than 1%, even for estimates that included the fewest number of samples.
Precisions were always <2% on a study period and annual basis, and <2% precisions were obtained for quarterly
and monthly time intervals for estimates that had better sampling. The bias and precision of composite-method load
estimates varies depending on the variability in the regression-model residuals, how residuals systematically deviated
from the regression model over time, sampling design, and the time interval of the load estimate. The regression-
model method did not estimate loads precisely during shorter time intervals, from annually to monthly, because the
model could not explain short-term patterns in the observed concentrations. Load estimates using the period-weighted
approach typically are biased as a result of sampling distribution and are accurate only with extensive sampling. The
formulation of the composite method facilitates exploration of patterns (trends) contained in the unmodelled portion
of the load. Published in 2006 by John Wiley & Sons, Ltd.
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INTRODUCTION

Stream-water solute load estimation

Stream-water solute load, often referred to as mass flux, is the mass of chemical solutes or sediment
transported at a point in a stream during a set period. Load estimation is frequently the central objective in
both long-term research studies and water-quality monitoring programmes. In watershed studies, mass flux
serves as an integrated measure of all processes within the watershed that affect water quality (Semkin et al.,
1994). With increased emphasis on watershed-based strategies for the control of non-point-source pollutants,
reliable measures of loads over time are needed to address whether water quality is either improving or
degrading. In the USA, stream reaches that do not meet water-quality standards are subject to waste-load
allocation schemes based on the total maximum daily load (TMDL). A TMDL is defined as the maximum
amount of a pollutant that a water body can receive and still meet water-quality standards (USEPA, 2000).
Estimates of stream-water solute load are necessary to determine compliance with TMDLs.
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The total solute load T is the convolution of solute concentration C and discharge Q over time t:

T D
∫

C�t�Q�t� dt �1�

Load estimation using the integral in Equation (1) requires a continuous record of concentration and discharge.
Although discharge can be measured quite readily, solute concentration typically is measured less frequently
due to the expense of collecting and analysing samples for water quality. Therefore, concentration must be
estimated between relatively infrequent samples. Several studies have compared different methods for load
estimation (e.g. Dann et al., 1986; Preston et al., 1989). These methods can be categorized into four classes
described below.

1. Averaging methods. All samples collected during an interval are averaged, either with or without weighting,
to determine an average concentration for the interval. Load is estimated by multiplying this average
concentration by the runoff for the same interval. If samples are not collected at a fixed interval or
randomly through time, then concentrations should be flow weighted. The precision of the load estimate
can be determined from the standard error of the average concentration.

2. Period-weighted approaches. Measured concentrations are assumed to represent a period around which the
sample was collected, either as a constant value represented by a step function through time (e.g. Likens
et al., 1977) or as a line connecting measured concentrations through time represented by a piecewise
linear function (e.g. Larson et al., 1995). The product of concentration and discharge is summed through
time to determine load. All samples collected are used in the estimation, and there is no preconceived
model for concentration. The load estimate is sensitive to sampling frequency and distribution. Therefore,
various sampling designs, such as selection at list time (SALT; Thomas, 1985) and time-stratified sampling
(Thomas and Lewis, 1993), have been developed to reduce errors. The variance of the load estimate can be
derived from a semivariogram calibrated to the data using a cross-validation technique (Shih et al., 1998).

3. Regression-model (or rating-curve) methods. C�t� is estimated using a regression model relating concentra-
tion to a continuously measured variable such as discharge and day of year (e.g. Johnson, 1979; Cohn et al.,
1992), thus enabling a direct calculation of Equation (1). Note that the variables used are often surrogates
for underlying processes that partially control concentration. The load estimate is sensitive to the accuracy
of the proposed model. A statistically based estimate of the precision of the load estimates can be deter-
mined (Gilroy et al., 1990). This method typically requires fewer data than the period-weighted approach
and sometimes can be used beyond the period that samples were collected (Robertson and Roerish, 1999).

4. Ratio estimators. An average annual concentration is calculated by dividing the average daily load by the
average daily discharge for days that have samples collected. Load is then determined by multiplying the
average concentration by the runoff and by a factor to adjust for statistical bias due to non-representative
sampling of the stream hydrograph (e.g. Beale, 1962). Ratio estimators assume that there is a linear relation
through the origin between daily load and daily flow and that the variance around this line is proportional
to the daily flow (Cochran, 1977).

The appropriate method to use depends on the frequency and distribution of sampling, the scale of the
system, and the strength and form of the relation between concentration and other variables, such as flow and
season (Richards and Holloway, 1987; Preston et al., 1989). Many studies have been done to assess errors in
load estimates using various sampling designs and load estimation methods. For example, Preston et al. (1989)
did a bootstrap (subsampling) study comparing load estimates with fixed-frequency sampling versus fixed-
frequency and event sampling from averaging methods, regression-model methods, and ratio estimators. Guo
et al. (2002) did a bootstrap study using various fixed-interval sampling frequencies to compare load estimates
from various regression-model methods and ratio estimators at various time intervals. Robertson (2003) used
various mixed-frequency sampling designs to assess errors in load estimates using the regression-model
method.

Published in 2006 by John Wiley & Sons, Ltd. Hydrol. Process. 20, 3029–3047 (2006)



THE COMPOSITE METHOD 3031

Sampling design

Instrumentation advances, such as computerized automatic samplers and increased automation of laboratory
analytical equipment, have made it feasible to collect many more samples to characterize a chemical time
series. However, costs associated with collection and analysis of a sample are still considerable, and it remains
impractical to collect water-quality data at uniform intervals at a sufficiently high frequency to characterize the
short-term changes in concentrations that occur during storms. Therefore, chemical time series often consist
of samples collected at a fixed interval (often weekly to monthly, depending on the size of the river basin)
interspersed with high-frequency (on the order of minutes to hours) samples during storms, snowmelt, or
events such as combined sewer overflows, giving rise to a mixed-frequency dataset. This type of sampling
defines concentration patterns better through time during periods in which solute concentrations are more
variable.

Purpose and scope

This paper presents the composite method as an alternative method for estimating solute loads. The
composite method combines aspects of the regression-model method and the period-weighted approach and
incorporates the use of mixed-frequency water-quality sampling. The bias and precision of the composite-
method load estimates will be determined using data from Panola Mountain Research Watershed (PMRW)
for different sampling scenarios and time intervals using a bootstrap experiment. The ability of the composite
method to estimate load accurately and precisely will be assessed by comparing composite-method load
estimates with load estimates from the period-weighted approach and regression-model method. Finally, we
will demonstrate that the composite method can improve load estimates for shorter time intervals and allow
for the better identification of patterns (trends) in the load estimates.

METHODS

Dataset description

This study uses data from PMRW, which has a long-term, comprehensive stream-water water-quality
dataset that is necessary for the analysis. PMRW is a 41 ha experimental basin (Huntington et al., 1993)
located approximately 25 km southeast of Atlanta, Georgia, USA, in the southern Piedmont physiographic
province. The stream draining PMRW is perennial at the watershed outlet. Streamflow is characterized by a
sustained baseflow with rapid rise and fall during storms. Data used in this analysis spanned an 8-year period
from water year (WY) 94 to WY01. (The US Geological Survey defines a WY as 1 October of the previous
year to 30 September of the designated year; hence, WY94 is from 1 October 1993 to 30 September 1994.)
Annual water yields for the 8-year period are variable, ranging between 16 and 46% (Figure 1).

Stream-water discharge was determined at 5 min intervals during baseflow conditions and at 1 min intervals
during storms. To characterize the water quality of the stream, 1923 samples were collected during the study
period. Grab samples were collected weekly, and storm-based samples were collected for the majority of large
storms and some smaller storms using an automatic stage-activated sampler (large storms being defined herein
as storms with peak flows greater than 10 l s�1 �0Ð21 cm day�1�). Storm-based samples were distributed in
such a manner as to cover the range in flows, flow conditions, and dynamics of the streamflow hydrograph, with
additional sampling during very high flows (>100 l s�1, 2Ð1 cm day�1). Hence, more samples were typically
collected for larger and more complex, multipeaked storms than for smaller storms. Sampling distribution by
WY is illustrated in Figure 1, with fewer storm samples collected in drier years, which contained fewer and
smaller large storms.

Baseflow and storm periods were identified using a flow hydrograph criterion developed specifically for
PMRW. Baseflow periods made up 56Ð6% of the total runoff during the study period (Table I) and daily
average baseflow ranged from 0Ð58 l s�1 (0Ð012 cm day�1) to 12Ð3 l s�1 (0Ð26 cm day�1). During the study
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Figure 1. Number of weekly fixed-interval, large storm, and small storm samples collected each year at outlet of PMRW and annual water
yields for the period WY94 to WY01

Table I. Summary of runoff and storm sampling by flow category.a It was assumed that all baseflow periods were sampled
sufficiently

Flow
category

Percentage
of total

runoff (%)

No. of
samples

No. of
storms

No. of
storms

sampled

Percentage
of storms
sampled

(%)

Average no.
of samples

per sampled
storm

Range
of no. of
samples

per storm

Portion of
runoff sampled

in flow
category (%)

Baseflow 56Ð6 354 n.a. n.a. n.a. n.a. n.a. 100Ð0
Small storm 4Ð4 121 219 80 36Ð5 1Ð5 1–4 45Ð7
Large storm 39Ð0 1448 232 178 76Ð7 8Ð1 1–36 90Ð7
Total 100Ð0 1923 n.a. n.a. n.a. n.a. n.a. 94Ð0

a n.a.: not applicable.

period, 232 large storms were identified, which contributed 39Ð0% of the total runoff. Of these large storms,
178 contained storm-based samples (76Ð7%), with an average of 8Ð1 samples collected per large storm and
a range of from 1 to 36 samples collected per storm. The storms that were not sampled tended to be small,
as 90Ð7% of the large storm runoff occurred during large storms containing samples. There were also 219
small storms identified, which contributed 4Ð4% of the total runoff. Of these small storms, 80 had samples
collected during them (36Ð5%), averaging 1Ð5 samples collected per storm and ranging from one to four
samples collected per storm. Small and large storms that were not sampled represent 6Ð0% of the total runoff
for the study period.

Alkalinity and chloride analyses of the stream-water samples collected are considered for this study.
Although both parameters undergo dilution with increasing flows, their controls on concentration variations
differ somewhat at PMRW. Alkalinity decreases at higher flows are largely the result of the combination of
dilution of the weathering products calcium and sodium present in deeper groundwater along with increases
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in sulphate from flow paths through shallow soil horizons. Meanwhile, chloride concentrations decrease at
higher flows as the result of dilution of higher chloride-concentrated water present in deep groundwater
by increased contributions of water from shallower flow paths that have lower concentrations of chloride.
Chloride in groundwater is derived from atmospheric deposition and is concentrated by evapotranspiration.
Alkalinity and chloride are analysed using standard methods. Quality control included analysis of standard
reference materials and routine interlaboratory comparisons. The coefficients of variation (COVs, i.e. the
standard deviation divided by the mean, expressed as a percentage) for concentrations of standard reference
materials were 2Ð2% for alkalinity and ranged from 2Ð8 to 5Ð5% for chloride. Further information on analytical
techniques is given by Huntington et al. (1993).

Regression-model construction

The composite method, like other regression-model load-based approaches, uses a regression model in
which concentration is a function of other continuous variables over time. In this study, concentration was
estimated as a function of stream discharge and day of year. One model was constructed for each solute using
all samples for the period of record. The concentration–discharge relation was modelled using a hyperbolic
function (Johnson et al., 1969), as its functional form fitted the data better than a log–log model. The
hyperbolic function does not introduce the transformation bias that occurs for a log–log model because the
hyperbolic function does not require retransformation from log space to linear space (Cohn et al., 1989).
The hyperbolic model also has some physical significance, in that it describes a two-component mixing
model.

Average discharge for a certain period immediately preceding the time of sample collection was used instead
of instantaneous discharge in the hyperbolic model, as suggested by Hooper (1986). The averaging period
reduced the degree of hysteresis in the concentration–discharge relation. Hysteresis is the effect in which
the concentration–discharge relation differs for samples collected during the rising limb of the hydrograph
compared with during the falling limb of the hydrograph.

There was also a dummy variable for whether or not the sample was collected on the rising limb of a
hydrograph. This dummy variable is ‘on’ when the instantaneous discharge is increasing and there has been
precipitation in the previous hour. This term was added to the regression model to correct the problem that
the means of the residuals were significantly different (p < 0Ð05) between the rising limb samples and all
other samples.

Seasonal variations in concentration were modelled using sine and cosine functions. Periods of 1 year and
0Ð5 years were used for sine and cosine terms to fit asymmetrical annual cycles. Each pair of sine and cosine
terms is equivalent to an individual sine function with the same period and a phase-shift term.

Therefore, our equation for model concentration is

CM�t� D C�QŁ�t�, D�

D a0 C a1

1 C ˇQŁ�t�
C a2m C a3 sin

(
2�D

365

)
C a4 cos

(
2�D

365

)

C a5 sin
(

2�D

182Ð5
)

C a6 cos
(

2�D

182Ð5
)

�2�

where QŁ�t� (l s�1) is the average discharge before time t (depending on solute), m is a dummy variable
depending on the slope of the hydrograph (0 or 1), D is the day of year (from 0 to 365), t is time, ˇ is a fitted
hyperbolic regression model parameter to linearize data, and an (n D 0–6) are regression model parameters.

The regression-model parameters an (n D 0–6) and ˇ were determined using a non-linear calibration
algorithm (SAS, 1990). Average discharges of 30 min for alkalinity and 15 min for chloride were used instead
of instantaneous discharges, as the average discharges fit the data better. Residual concentrations are defined
as the difference between the model-predicted and observed concentrations. Note that long-term time-trend
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terms purposely were not included in the regression model. In the composite method, long-term trends are
incorporated into the load estimates in a different manner, as discussed later.

It is important to assess the structure of the residuals to the model thoroughly. Residuals to any regression
model should be statistically independent and identically distributed to ensure accurate model parameter
estimation and model prediction. Unfortunately, mixed-frequency datasets have a tendency to violate these
statistical assumptions (Hooper and Aulenbach, 1997). To assess compliance with statistical assumptions,
residuals were plotted against the hyperbolic discharge term, day of year, and time.

Composite method for load estimation

The composite method combines aspects of the regression-model method and period-weighted approach to
develop an alternative concentration function from which to estimate loads. One portion of the concentration
function consists of the regression model developed above �CM�t��, the same function used by the regression-
model method. The second portion of the concentration function is a continuous function of regression-model
residual concentrations (Cε�t�) constructed by linearly interpolating the residuals through time in a piecewise
manner between sample observations. The period-weighted approach often uses a similar approach, but for
the observed concentrations. Although a piecewise linear function is a simplistic model of the residuals, and
far more sophisticated models are possible, the data density typically available at research catchments make
the approach plausible. Substituting the two concentration functions into the relation for integrating solute
load over time (Equation (1)) yields

T D
∫

CM�t�Q�t� dt �
∫

Cε�t�Q�t� dt �3�

The different concentration functions used by the regression-model method, the period-weighted approach,
and the composite method for a typical sampled storm hydrograph (Figure 2a) are illustrated in Figure 2b–d.
Figure 2b shows CM�t� used by the regression-model and composite methods along with the piece-
wise linear function of the observed concentrations used by the period-weighted approach. Figure 2c
shows the residuals to the regression model connected in a piecewise linear manner �Cε�t�� used
by the composite method. The combined concentration function for the composite method, CM�t� �
Cε�t�, is shown in Figure 2d. Note that this concentration function predicts the observed concentra-
tion.

In this manner, the composite method attempts to reduce the error of load estimates by taking advan-
tage of the strengths of both load estimation methods that compose it. Whereas the period-weighted
approach varies concentrations between sample observations in either a stepwise or linear fashion, the
composite method uses a regression model to predict typical concentration variations between sam-
ple observations. Whereas the regression-model method develops a model of average chemical response
and then ignores the remaining information contained in the residual concentrations, the composite
method retains the residual concentrations to adjust the regression-model-predicted concentrations to
the observed sample concentrations and applies the residuals between samples using a period-weighted
approach.

Therefore, the composite method total load T is composed of two components:

T D M � ε �4�

where the model load T is the load estimated from CM�t�, and the residual load ε is the load estimated
from Cε�t�.

The M portion of T is equivalent to the load estimated using the regression-model method. The ε

portion of T is the portion of the load unexplained by the regression model and represents a combination
of unexplained variation due to biogeochemical and hydrological processes that are not accounted for in the
regression model, to changes in the model relation over time (trend), and to measurement errors. The composite
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Figure 2. Concentration functions used in various load estimation methods for alkalinity at PMRW for storm on 7 August 1995. (a) Stream
discharge at PMRW. Points indicate when samples were collected for water quality. (b) Period-weighted approach piecewise linear function
Cε�t� and regression-model method function CM�t�. Points indicate observed sample concentrations. (c) Piecewise linear function of residual
concentrations ε�t�. Points indicate residual concentration when sample is collected. (d) Composite method concentration function. Note that

C�t� goes through observed concentrations (points)

method has been used in studies by Huntington et al. (1994) and Peters et al. (2006), and is equivalent to the
Q-proportionate method employed by Vanni et al. (2001).

The integral for solute load (Equation (3)) is estimated numerically using the extended trapezoid rule
(Press et al., 1986) with a convergence criterion of <0Ð2% change in load between iterations. Solute load was
estimated on a daily time-step. A minimum of seven iterations (65 equally spaced evaluations per day of the
integral in Equation (3), a calculation rate of one every 22Ð5 min) was used to ensure that storms with short
duration entered the calculations. For each evaluation, the regression-model and residual concentrations along
with the instantaneous discharge were determined and load was calculated. Convergence always occurred
within 12 iterations (2049 evaluations per day, a calculation every 42 s).
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Assessing error in estimated true load

The actual or ‘true’ load must be known in order to determine the error of load estimates accurately using
various sample designs and methods in this study. Other load estimation methodology studies on larger streams
for which loads could be sufficiently estimated on a daily time-step and for which daily concentrations were
available have been able to calculate the true load directly (e.g. Preston et al., 1989, Guo et al., 2002). Smaller
watersheds, such as PMRW, typically do not have water-quality measurements at a sufficient frequency to
be able to calculate the true load directly and must, therefore, estimate the true load using the best sampling
possible. Therefore, the estimated true load is the load estimated using the composite method that includes all
samples collected (weekly fixed-interval sampling along with all small and large storm samples). Although
sampling at PMRW is quite extensive, there is still the question of whether the sampling for the estimated
true loads was at a sufficient frequency to determine the true loads accurately.

As the frequency of sampling is increased, the load estimates should converge on the true load (Preston
et al., 1989). Hence, if sampling is increased incrementally, then the incremental improvement in the load
estimates should decrease as the estimate converges on the true load. Therefore, a small difference between
loads estimated using a true-load sampling scenario and loads estimated from a subsampling scenario with
significantly fewer samples is an indication that sampling was sufficient and that the estimated true load is
accurate. A larger difference in load estimates is an indication that there was insufficient sampling and the
estimated true load might be biased and imprecise. Unfortunately, these differences in load estimates only
qualitatively assess the estimated true load, as these differences are indications of convergence and not a
quantitative measure of the actual bias.

Based on the idea above, the estimated true load was assessed by comparison with load estimates from four
subsampling scenarios to see whether the load estimates were close to converging on the true load. Each of the
four subsampling scenarios represents a different aspect of sampling that requires the adequacy of sampling
to be assessed. The adequacy of weekly fixed-interval sampling was assessed by comparing loads estimated
using fixed-interval sampling reduced to biweekly. The adequacy of sampling enough of the large storms
was assessed by comparing loads estimated with the subsampling scenario of 60% of large storms sampled
along with weekly fixed-interval sampling (a test case from the bootstrap experiment described below). The
adequacy of sampling the large storms at a sufficient frequency was assessed by comparing loads estimated
with a subsampling scenario that included all large storms sampled, but included only every second storm
sample collected. The importance of sampling small storms was assessed by comparing loads estimated with
a subsampling scenario that did not include the small storm samples.

A rough estimate of the affect of unsampled small and large storms on the overall precision of the load
estimates was determined by the product of the percentage of the unsampled storm runoff (with respect to the
total runoff) and the COV of the residuals (COVs of residuals are calculated herein as the standard deviation
of the residuals divided by the mean of the observed concentrations and are expressed as a percentage). This
estimate assumes that the COVs of the residuals are statistically independent and identically distributed.

Regression-model method

Regression-model method loads were estimated to compare the results with composite-model load estimates.
Regression-model method loads were estimated using the same regression model developed for the composite
method. Regression-model method loads were also estimated using regression models with additional, often
used, quadratic long-term trend terms (time and time-squared terms) to determine how these terms affect the
load estimates.

Bootstrap experiment

A bootstrap (subsampling) experiment using the PMRW dataset was designed to determine and compare
the bias and precision of the load estimates for the composite method and the period-weighted approach using
a variety of different sampling designs. A bootstrap experiment was chosen rather than using a Monte Carlo
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approach with an artificial dataset to illustrate how the composite method can incorporate natural variations in
the dataset that were not explained by the regression model. A Monte Carlo approach has its own advantages,
in that the true load is known and the variability in the underlying data is known and random, allowing for
the effects of variation on load estimates to be more easily assessed. This is because a Monte Carlo approach
uses an artificial dataset with a known function of concentration through time with a known introduced error.
Artificial datasets, however, cannot easily mimic variations observed in real datasets.

The effect of varying numbers of large storms sampled on load estimates was simulated by setting the
percentage of large storms sampled during the study period to 0, 10, 20, 40, 60, and 77% (with 77%
representing the total percentage of large storms sampled during the study). The effect of the frequency
of routine fixed-interval sampling on load estimates was simulated using two different fixed intervals, i.e.
weekly and monthly. Hence, there are 12 combinations of percentage of storm sample inclusion and fixed-
interval sampling frequencies that were used to estimate loads. These combinations are referred to hereafter
as test cases. For test cases with between 10 and 60% large storms, load estimates were simulated 100 times,
with the large storms sampled being randomly selected for each simulation (with all samples from each
selected storm included in the simulation). In this manner, the variability in the load estimates due to the
random selection of storms is also assessed for these test cases. All test cases were estimated using both the
composite method and the period-weighted approach.

Bias and precision of load estimates

Load estimates from the subsampling scenarios, bootstrap experiment, and regression-model method were
compiled monthly, quarterly, annually (WY), and for the 8-year study period. The error in load estimates
is a combination of bias (accuracy) and precision. Bias and precision were calculated as the percentage of
the estimated true loads to allow easy comparisons between the two solutes and with other studies, and to
give equal weight to each month, quarter, or year when calculating precisions for different time intervals.
The bias of each test case is calculated as the percentage difference of the load estimate with respect to the
estimated true load. The average load estimate was used for comparison in bootstrap experiment test cases
that contained 100 simulations. The precision of each test case was determined at the various time-scales as
the standard deviation of the percentage errors. The precision is a measure of the variability in the percentage
errors of the load estimates at shorter time intervals and the variability in the load estimates due the random
selection of large storms. Note that precision for the study period time-scale could only be determined for the
bootstrap experiment test cases with between 10 and 60% large storms, as these test cases had 100 simulations
and allowed for the calculation of a standard deviation.

Note that the biases and precisions determined for the load estimates only assess errors as the result of
the load estimation technique and sampling scenarios with respect to the estimated true loads. Additional
errors associated with flow measurements, the representativeness of the water-quality samples collected, and
chemical analyses are not considered herein, but each can typically be on the order of 5 to 10%. The cumulative
effect of all these errors should be considered when determining the overall error in the load estimates.

Trend analysis approach

The composite method is formulated such that the effects of hydrologic variability on load estimates
related to regression-modelled relations are incorporated into M. The concentration deviations from the
regression model are incorporated into ε. A runoff-normalized ε, which represents a flow-weighted average
concentration deviation from the model-predicted concentrations, can be calculated for a certain period (e.g.
year, quarter, or month) by dividing by the runoff for that period. The runoff-normalized ε can be used to
identify temporal patterns in concentration deviations from the regression model and can be used to investigate
other more long-term controls on concentrations not modelled by the regression model. Relations between
runoff-normalized ε and water yields were explored at various time-steps.
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RESULTS

Evaluation of regression models

Model performance. The regression models developed explained a large portion of the variation in
concentrations, with model R2 values of 0Ð93 for alkalinity and 0Ð80 for chloride (Table II). It should be
noted that, despite the higher model R2 value for alkalinity, alkalinity still had a higher COV in the residuals
of 16Ð7% compared with 12Ð1% for chloride. This occurred because the COVs of observed concentrations
were much higher for alkalinity (62Ð8%) than for chloride (26Ð8%).

Residual analysis. There were persistent long-term patterns in the baseflow sample residuals (lack of serial
independence), as illustrated in Figure 3 for alkalinity. There were also larger short-term variations in the
storm sample residuals compared with baseflow samples (unequal variance), as illustrated in Figure 4 for
alkalinity in WY95. This occurred despite the fact that the overall residual patterns for baseflow and storm
samples were homoscedastic when plotted versus transformed discharge and day of year. These observations
indicate that the models have some degree of misspecification, neither predicting the long-term patterns in
concentrations during baseflow conditions nor adequately capturing the short-term variations in concentrations
during storms.

Assessment of load estimation methods

Composite method load estimates. The portion of the total load determined from the regression model M

is always the dominant component of the load, representing 97Ð9% of T for alkalinity and 99Ð4% of T for
chloride during the study period (Table III). This was expected, because the regression models used in this
analysis explained a large portion of the variability in the solute concentrations. ε as a percentage of the
total load was �2Ð1% for alkalinity and �0Ð6% for chloride for the study period. The ε contributions are

Table II. Summary of regression model R2 values and COVs of solute concentrations and residuals
at PMRW for period of study. The mean of the concentrations is used to calculate the COV for the

residuals

Solute Model R2 COV of concentrations (%) COV of residuals (%)

Alkalinity 0Ð93 62Ð8 16Ð7
Chloride 0Ð80 26Ð8 12Ð1
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Figure 3. Baseflow sample residual concentrations for alkalinity at PMRW for period of study, WY94–WY01
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Figure 4. Alkalinity residual concentrations for baseflow and storm samples at PMRW for WY95

Table III. Comparison of model load M and residual load ε to total load T estimates from the composite
method at PMRW for period of study and annually

Solute Period of study
M/T (%)

Period of study
ε/T (%)

Minimum annual
ε/T (%)

Maximum annual
ε/T (%)

Alkalinity 97Ð9 �2Ð1 �7Ð8 8Ð8
Chloride 99Ð4 �0Ð6 �3Ð7 5Ð4

fairly close to zero since the residuals concentrations vary around a mean of zero; therefore, ε values tend to
just about cancel out over time. But on an annual basis, ε typically represents a much larger portion of the
total loads, with the range in the annual percentage contribution of ε to T being from �7Ð8% to C8Ð8%
for alkalinity and �3Ð7% to C5Ð4% for chloride. The large range in annual ε is an indication of persistent
(on an annual basis) yet variable (for the entire study period) deviations in observed concentrations from the
predicted concentrations of the regression models.

Assessment of estimate of true loads. The bias and precision in the subsampling scenario load estimates
with respect to the estimated true loads are summarized in Table IV. Subsampling scenarios resulted in a
š0Ð3% or less bias for the study period. These small differences in load estimates indicate that the sampling
used in the estimated true loads is sufficient for determining an unbiased estimate of load for the study period.
The precision of the subsampling scenario load estimates with respect to the estimated true loads increased
as one decreased the time period of interest, getting as high as 2Ð1% for alkalinity and 1Ð4% for chloride on
a monthly basis. These observed variations indicate that the adequacy of the sampling of these subsampling
scenarios is somewhat insufficient at these shorter time intervals. This suggests that there may be biases in
the estimated true loads at these shorter time intervals that could result in errors in the precision estimated
for test cases at shorter time intervals.

The effect on precision of the load estimates from the unsampled large and small storms portion of runoff,
which accounted for 6Ð0% of the total runoff of the study period, was estimated as 1Ð0% for alkalinity
and 0Ð7% for chloride. These precision estimates may not be accurate because they assume that the residual
concentrations are independent and identically distributed, whereas it has been already shown that they are not.

Published in 2006 by John Wiley & Sons, Ltd. Hydrol. Process. 20, 3029–3047 (2006)



3040 B. T. AULENBACH AND R. P. HOOPER

Table IV. Bias and precision of load estimates from subsampling scenarios with respect to the estimated true estimates for
various time-scales

Subsampling scenarioa Bias for study
period (%)

Standard deviation

Alkalinity Chloride Annual
percentage
errors (%)

Quarterly
percentage
errors (%)

Monthly
percentage
errors (%)

Alkalinity Chloride Alkalinity Chloride Alkalinity Chloride

Biweekly fixed interval (n D 1778) �0Ð1 0Ð2 0Ð6 0Ð3 1Ð1 0Ð8 1Ð7 1Ð4
60% large storms (n D 1514 on

average)
0Ð2 �0Ð3 0Ð8 0Ð5 1Ð5 1Ð0 2Ð1 1Ð4

Every other large storm sample
(n D 1218)

0Ð3 0Ð1 0Ð4 0Ð5 1Ð2 0Ð8 1Ð8 1Ð1

Exclude small storm samples
(n D 1830)

0Ð2 �0Ð1 0Ð2 0Ð1 0Ð5 0Ð3 0Ð8 0Ð5

a n is the number of samples.

Biases of load estimates. Biases in load estimates from the bootstrap experiment and from the regression-
model method are summarized for the study period in Figure 5. Composite method load estimates are fairly
unbiased and had fairly similar accuracies for both solutes, with biases ranging from �0Ð8% to C0Ð7% for
alkalinity and �0Ð8% to C0Ð5% for chloride. For weekly fixed-interval sampling test cases, biases decreased
as the percentage of large storms sampled was increased from 0 to 77%. But load estimates are somewhat
biased when using monthly fixed-interval sampling, with errors for the all-large storms test case of �0Ð8%
for alkalinity and 0Ð5% for chloride. The magnitude of the bias was equivalent to the bias obtained by the
test case using weekly fixed-interval sampling with no large storm sampling.

In test cases in which 77% of the large storms were included, the period-weighted approach underestimated
loads. Load estimates were fairly unbiased when weekly fixed-interval sampling was used, being �1Ð4% for
alkalinity and �0Ð5% for chloride, but biases were larger when monthly fixed-interval sampling was used,
these being �7Ð6% for alkalinity and �1Ð9% for chloride (Figure 5). These biases were likely an artefact of
storm sampling design. The first storm sample was not taken until after the initial rise in streamflow, and the
last storm sample was taken before flow and concentration completely returned to baseflow conditions. As a
consequence, storm samples with lower concentrations near the beginning and end of each storm were applied
to the adjacent baseflow periods, resulting in load being underestimated during these baseflow periods. This
is more evident for the monthly fixed-interval sampling test case, where there were fewer baseflow samples
collected.

The period-weighted approach overestimated loads when 60% or fewer large storms were sampled
(Figure 5). Overestimates are considerable in test cases for which 40% or fewer large storms were included,
with errors ranging from 5Ð7 to 23% for alkalinity and from 3Ð4 to 10% for chloride. This bias is the result of
higher baseflow concentrations being applied to storm periods, which actually have lower concentrations due
to dilution, due to the lack of storm sampling. Overall, the chloride load estimates are less biased than the
alkalinity load estimates, largely because chloride sample concentrations were less variable than alkalinities
(Table II).

Errors in regression-model method load estimates, using the regression models used in the composite method
(with no long-term time terms), are �2Ð1% for alkalinity and �0Ð6% for chloride. In comparison with the
composite-method load estimates, the regression-model method errors are somewhat larger for alkalinity and
similar for chloride. Adding long-term time and time-squared terms to the regression model, terms typically
included in the regression-model method, reduced the bias to �1Ð1% for alkalinity and �0Ð1% for chloride.
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Figure 5. Biases in load estimates, with respect to the estimated true loads, using various load estimation methods and sampling designs for
alkalinity and chloride for the study period (CM: composite method; PWA: period-weighted approach; RMM: regression-model method; W:

weekly fixed-interval sampling; M: monthly fixed-interval sampling; QTT: regression model contains quadratic long-term time terms)

Temporal patterns in errors are illustrated for a select group of load estimation methods and sampling test
cases on an annual basis for alkalinity in Figure 6. Annual errors for the composite-method load estimates for
the test case with 77% of large storms sampled and weekly fixed-interval sampling are always within š0Ð5%.
With some exceptions, the annual errors are generally less than š2% for other composite-method test cases.
The period-weighted approach using the most ideal sampling from the bootstrap experiment generally has
annual errors of less than š2%, with the exceptions of WY00 and WY01, which have larger errors. Annual
errors in load estimates using the regression-model method are much more variable, despite there being only
small biases in the overall loads. Annual errors are as large as 8Ð8% when no time terms are included in the
regression model, whereas errors are somewhat smaller when the regression model contained quadratic time
terms, with errors of less than š6Ð1%. The addition of the quadratic time terms did not remove the overall
pattern of annual deviations from the estimated true loads. Similar patterns in annual errors are observed for
chloride, but with overall errors being about 20% lower.

Precision of load estimates. Precisions for the various load approaches, bootstrap sampling designs, and
time intervals are summarized for alkalinity for selected test cases in Figure 7. As one would expect, load
estimates are less precise as the time interval of interest is shortened and the amount of sampling is decreased.
For the composite method, precisions for all test cases range from 0Ð2 to 0Ð5% for the study period, from 0Ð2
to 1Ð9% on an annual basis, from 0Ð5 to 4Ð0% quarterly, and from 0Ð8 to 5Ð6% monthly. Precision is better
for test cases that had more samples collected, typically with somewhat better precisions obtained for the
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Figure 6. Biases in alkalinity annual load estimates, with respect to the estimated true load, using selected load estimation methods and
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weekly fixed-interval test cases when compared with monthly fixed-interval test cases with about the same
total number of samples collected during the period.

For the period-weighted approach, precisions for alkalinity are much more variable than the composite
method, ranging from 1Ð2 to 2Ð1% for the study period, from 2Ð0 to 7Ð1% on an annual basis, from 3Ð4
to 19% quarterly, and from 5Ð8 to 30% monthly (Figure 7). The higher precisions observed for the period-
weighted approach are to be expected; this is because the COVs in the observed concentrations, used in the
period-weighted approach, are significantly higher than the COVs in the residual concentrations, which are
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Figure 8. Water yield for period of previous 5 months and current month versus runoff-normalized ε for alkalinity. Linear trend-line has
R2 of 0Ð31

period-weighted in the composite method (Table II). The variability of the period-weighted approach for the
test case with the most number of samples included is equivalent to the variability with the composite method
for the test case with the least number of samples included.

Regression-model method precisions for alkalinity models with and without quadratic time terms are
3Ð8% and 6Ð3% respectively on an annual basis, 6Ð1% and 7Ð9% respectively quarterly, and 7Ð4% and 8Ð8%
respectively monthly (Figure 7). Although the addition of the quadratic time terms improved the precision,
regression-model method load estimates are more variable than all composite-method load estimates and are
more variable than some of the better-sampled test cases using the period-weighted approach, especially at
the annual time interval. The regression-model method, even with the inclusion of time terms, just does not
have ability to model loads precisely during shorter time intervals. Chloride estimates have similar patterns
in variability (not shown), but are more precise, with precisions being about 30% smaller for the composite-
and regression-model methods and about 50% smaller for the period-weighted approach.

Patterns in residual loads

Annual runoff-normalized ε for alkalinity decreased linearly with annual water yield (R2 D 0Ð78),
indicating that the regression model overpredicted alkalinities during dry years and underpredicted alkalinities
during wet years for the same flow and season conditions. Monthly runoff-normalized ε values for alkalinity
were most strongly linearly related to the water yield of the period that included the current month and previous
5 months (R2 D 0Ð31; Figure 8). Chloride runoff-normalized ε values did not have any significant relations
with water yield.

DISCUSSION

Although the overall biases for the study period were always š0Ð8% or less for all test cases using the
composite method, the bootstrap experiment indicated that test cases with monthly fixed-interval sampling were
often somewhat biased. Load estimates did not converge on the estimated true load when the number of large
storms sampled was increased. There are two reasons why this occurred. First, when monthly fixed-interval
sampling was used, baseflow periods were more often influenced by the residual concentrations of the first and
last samples of a storm, which were not always representative of baseflow residual concentrations. Second,
there are systematic patterns in the baseflow residuals that were accounted for better in the load estimates when
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the higher weekly frequency fixed-interval sampling (of which about 85% represented baseflow conditions)
was used. Still, the resulting biases for the monthly fixed-interval sampling test cases were always small and
were either similar to or smaller than the magnitude of the overall bias observed in the regression-model
method load estimates.

Although the regression-model method was adequate for accurately estimating loads for the overall study
period, the method could not precisely estimate loads for shorter time periods, from annually to monthly. The
regression model predicts the average concentration response for the study period with the premise that the
model residuals represent only error. If this were the case, then residuals should vary randomly through time
and residual loads should tend to cancel out over time, resulting in little error in the load estimates at these
shorter time intervals. If this were the case, the composite-method load estimates would be no better than
loads estimated using the regression-model method. But the residual analysis showed that the residuals do
not vary randomly through time, indicating that the regression model failed to explain some of the variability
in the observed concentrations. The addition of long-term quadratic time trend terms in the regression model
only minimally improved load estimates for shorter time periods because the patterns of the deviations from
the regression model did not follow a simple quadratic mathematical formulation.

Meanwhile, the composite method is better able to estimate loads at shorter time intervals because of
its ability to incorporate systematic deviations in concentrations from the regression model into the load
estimates. The composite method does this by retaining the information contained in the residuals to adjust
the regression-model-predicted concentrations to those of the observed concentrations. This does not require
a preconceived mathematical formulation of the patterns in the residual concentrations.

The relations observed for alkalinity runoff-normalized ε values are another indication that the residuals
contain more than random error. Alkalinity concentration variations are not only a function of flow, but also
of wetness conditions. The relation between the monthly runoff-normalized ε values and the water yields
for the period of the current month and preceding 5 months indicate that alkalinity is not only a function of
the current wetness conditions, but also is a result of how wet it has been lately. This alludes to a watershed
process of retention and release. In fact, Huntington et al. (1994) showed that the export of sulphate to stream
water at PMRW is increased after extended dry periods. This would result in a corresponding decrease in
alkalinity during these conditions, which is what was observed. The composite method, as a result of its
two-component formulation of load, thereby provides a useful mechanism for exploring unmodelled relations
between concentration and hydrologic conditions and/or biogeochemical processes, which can result in a better
understanding of watershed processes.

The composite method should be applicable to other solutes and to watersheds of all sizes and should
generally result in either improved or similar load estimates compared with loads estimated using the period-
weighted approach or regression-model method. Any solute for which a regression model can be developed to
predict concentration variations can be used in the composite method. For solutes that have regression models
with little predictive ability, however, the regression model will then, in essence, just predict the mean
concentration of the samples and the composite model will be equivalent to a period-weighted approach.
The composite method should improve load estimates compared with the regression-model method if serial
autocorrelation exists in the residual concentrations, as discussed previously. But non-ideal sampling with
respect to patterns in the residual concentration could result in biases in the composite method, as observed
for the monthly fixed-interval sampling test cases. Although the resulting biases were small in this study, biases
could be conceivably more significant for a particular combination of sampling designs and patterns in residual
concentrations; possibly resulting in the degradation of load estimates with respect to the regression-model
method.

Sample frequency requirements for the composite method to obtain a desired accuracy and precision
will vary by both watershed and solute characteristics. Larger watersheds, in which variations in flows and
concentrations occur at a much lower frequency, typically would require less sampling than was needed for
PMRW. Higher variability in residual concentrations will reduce the precision of the load estimates. Patterns
in the residual concentrations through time can result in less precise load estimates at shorter time periods and
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slightly biased load estimates overall unless adequate sampling is used to capture the patterns in the residuals
adequately.

Further reductions in data requirements for load estimation methods will require models that more accurately
capture the processes controlling concentration variation and more sophisticated statistical techniques that can
better reproduce the statistical behaviour of model residuals. Sampling always will be necessary to estimate
loads accurately during shorter time intervals, if concentrations systematically deviate from concentration-
model predictions for periods that appreciably contribute to the overall load for the time period of interest.

CONCLUSIONS

Although the regression models developed for PMRW data could explain much of the variation in concentra-
tions of solutes, the residual analysis indicated that residual concentrations behave differently during baseflow
versus storm conditions (heteroscedasticity). The regression models developed did not account for short-term
variations in concentration during storms and longer-term persistent concentration patterns observed dur-
ing baseflow. These model misspecifications can result in errors in load estimates when they are based on
regression models.

Period-weighted approach load estimates are very sensitive to the sampling design and typically result in
large biases in load estimates when there is not sufficient sampling to capture the concentration variations
during storms. Precisions of the load estimates were typically high for shorter time intervals of quarterly and
monthly. However, the period-weighted approach did have low error with extensive sampling. For example,
the comprehensive PMRW dataset used in the bootstrap experiment indicated that, when all samples were
included, biases of less than š1Ð5% were obtained for load estimates for the period of study and precisions
of <2% were obtained on an annual basis.

The regression-model method was adequate for accurately estimating load for the 8-year study period, with
biases ranging from �0Ð1 to �2Ð1% for the two solutes (alkalinity and chloride) and two model forms (no
time terms versus quadratic time terms). The method had shortcomings when estimating loads for shorter
time periods. This is because the model predicted the average concentration response for the conditions,
not the specific response observed for a particular time period, resulting in poor precisions at time intervals
from annually to monthly. Although the addition of quadratic long-term time terms in the regression model
improved the overall bias in the load estimates, along with some improvements in precision at shorter time
intervals, the time terms could not fully capture short-term concentration deviations from the regression model.

The composite method combines aspects of two commonly used methods: the regression-model method
(which is used to predict variations in concentrations between collected samples) and a period-weighted
approach (which is used to apply the residual concentrations from the regression model over time). The
composite method is better able to adapt to short-term persistent deviations from the regression model observed
in the PMRW data while being less sensitive to sampling deficiencies than the period-weighted method. The
result is that the composite method load estimates are less biased and more precise than load estimates from
the regression-model method and the period-weighted approach with no additional sampling requirements.
The composite method should be applicable to other solutes for which a regression model can be developed
for concentration versus other continuous variables and should be applicable to watersheds with different
scales.

The bootstrap experiment using data from PMRW indicated that composite-method load estimate biases
were always š0Ð8% or less, even for test cases with relatively infrequent sampling. Precisions were always
<2% on a study period and annual basis, and <2% precisions could be obtained for quarterly and monthly
time intervals for test cases with better sampling. Ultimately, the bias and precisions in load estimates
obtained with the composite method are dependent on the amount of variation in residual concentrations,
the behaviour of residual concentrations through time, and the sampling design. The errors achieved in
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composite-method load estimates with PMRW data are well within the typical range of errors associated with
sample representativeness, flow measurement, and analytical chemistry.

The ε portion of the composite-method load estimate, runoff normalized, is useful for exploring patterns
(trends) contained in the unmodelled portion of the load. At PMRW, monthly runoff-normalized ε values for
alkalinity indicated that systematic deviations in alkalinity from the regression-model-predicted concentrations
were related to recent wetness conditions.
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